Table 16. Low Capacity Scenario Changes⁽¹⁾ from the No-Ban Case When MTBE is Removed

(Thousand Barrels Per Day)

	PADD 1	PADD 2	PADD 3	PADD 5	Total U.S.
Loss of MTBE Volumes	-113	0	-93	-101	-306
Addition of Ethanol to RFG ⁽²⁾	75	0	18	58	151
Reduction in Light Ends for RVP	-21	0	-37	-50	-108
Reduction of Heavy Ends for Distillation Points	-12	0	-9	-16	-37
Refinery Increased Alkylate Production	9	10	71	17	107
Commercial Alkylate or Iso- Octane Production	0	0	25	10	35
Added Ethanol in Conventional	0	-20	0	0	-20
Total	-62	-10	-25	-82	-179

⁽¹⁾ These estimates do not take into consideration additional volume losses due to MSAT constraints on refiners switching from MTBE to ethanol.

115 = 0.112*93.5 + .888*117.7 and

115 = 0.58*76 + 0.942*117.7

Totals may not equal the sum of the components due to independent rounding Source: Energy Information Administration

⁽²⁾ No volume adjustment for energy content differences is needed in this table since ethanol has a lower Btu content (76,000 Btu's) than MTBE (93,500 Btu's), and 5.8 percent ethanol is being assumed to substitute for 11.2 percent MTBE as illustrated for a gallon of 115 thousand Btu finished gasoline: